
Figure S1. Example of tags used to parallelize variant calls by chromosome and variants agglomeration by sample

COSMOS introduces a “tag” system that associates a set of key-values (e.g., a sample ID, chunk ID, sequencer ID or other job parameter) to each task in the
stage. These tags are used to associate a particular task for use and processing in COSMOS’ web interface, API and database. In this figure, the call variants
stage of the workflow is parallelized by split_ function with “chr “ tag with values 1,2, …, 22,(center row of Fig S1). The split_ function inherits all
parent tags (sample) and creates tasks for each distinct chr tag value. In the subsequent reduce_ call (lower row of Fig S1), previous tasks are grouped by
sample tag value thus only two tasks are created. Note that this construct allows split_ , reduce_ and other COSMOS tasks and jobs to be independent
of ‘tagged’ objects such as number of “input files”.

COSMOS’ tag system improves upon Bpipe by allowing complicated workflow constructs such as the split_and reduce_ DAG described above and
visualized in Figure S1. In addition, Bpipe relies on a regular-expression with a single wild-card operator to split input files across parallel jobs. Consequently,
in essence the information required to split jobs is encoded in file names. In contrast, COSMOS’s flexible tagging system uses the Python dictionary of key-
value pairs on which to split and combine job outputs, even at distal stages in the workflow thus supporting a diverse collection of DAGs.

Figure S2. “Workflow Figure 1” described in Figure S1 is displayed by COSMOS’s web visual of active workflows.

Figure S3. COSMOS Web visual of completed four stages in the workflow from Figure 1 along with runtime statistics. Note the number of tasks/job for each
stage corresponds to the number of jobs in Figure 1(c).

Figure S4. COSMOS Web visual showing a drilldown for the “Align” stage in the workflow. Each task/job sent via the DRMAA library to the underlying
DRM (in this case, LSF) is displayed.

Figure S5. COSMOS Web visual of a ample in-progress COSMOS workflow of next-generation sequencing (NGS) analysis of three exomes, from loading of
BAM files, through alignment, variant calling via the Genome Analysis Toolkit (GATK 3.x) to variant quality scoring of output of VCF files.

Figure S6. (A) Python code from the Pegasus tutorial (http://pegasus.isi.edu/wms/docs/latest/tutorial.php#idp10013792) implementing a “diamond” DAG with
(B) roughly equivalent COSMOS code. Pegasus requires the programmer to manage the file names of inputs and outputs, while COSMOS handles this
automatically.
A import sys, os

Import the Python DAX library
os.sys.path.insert(0, "/usr/lib64/pegasus/python")
from Pegasus.DAX3 import *

The name of the DAX file is the first argument
if len(sys.argv) != 2:
 sys.stderr.write("Usage: %s DAXFILE\n" % (sys.argv[0]))
 sys.exit(1)
daxfile = sys.argv[1]

Create a abstract dag
print "Creating ADAG..."
diamond = ADAG("diamond")

Add a preprocess job
print "Adding preprocess job..."
preprocess = Job(name="preprocess")
a = File("f.a")
b1 = File("f.b1")
b2 = File("f.b2")
preprocess.addArguments("-i",a,"-o",b1,"-o",b2)
preprocess.uses(a, link=Link.INPUT)
preprocess.uses(b1, link=Link.OUTPUT, transfer=False, register=False)
preprocess.uses(b2, link=Link.OUTPUT, transfer=False, register=False)
diamond.addJob(preprocess)

Add left Findrange job
print "Adding left Findrange job..."
frl = Job(name="findrange")
c1 = File("f.c1")
frl.addArguments("-i",b1,"-o",c1)
frl.uses(b1, link=Link.INPUT)
frl.uses(c1, link=Link.OUTPUT, transfer=False, register=False)
diamond.addJob(frl)

Add right Findrange job
print "Adding right Findrange job..."
frr = Job(name="findrange")
c2 = File("f.c2")
frr.addArguments("-i",b2,"-o",c2)
frr.uses(b2, link=Link.INPUT)
frr.uses(c2, link=Link.OUTPUT, transfer=False, register=False)
diamond.addJob(frr)

Add Analyze job
print "Adding Analyze job..."
analyze = Job(name="analyze")
d = File("f.d")
analyze.addArguments("-i",c1,"-i",c2,"-o",d)
analyze.uses(c1, link=Link.INPUT)
analyze.uses(c2, link=Link.INPUT)
analyze.uses(d, link=Link.OUTPUT, transfer=True, register=False)
diamond.addJob(analyze)

Add control-flow dependencies

B from cosmos.contrib.ezflow.dag import DAG, add_, sequence_, map_, apply_
from cosmos.contrib.ezflow.tool import INPUT

in_list = [INPUT("f.a", tags={'sample': 1})]

dag = DAG().sequence_(
 add_(in_list),
 map_(preprocess),
 apply_(findrange_b1, findrange_b2, combine=True),
 map_(analyze)
)

print "Adding control flow dependencies..."
diamond.addDependency(Dependency(parent=preprocess, child=frl))
diamond.addDependency(Dependency(parent=preprocess, child=frr))
diamond.addDependency(Dependency(parent=frl, child=analyze))
diamond.addDependency(Dependency(parent=frr, child=analyze))

Write the DAX to stdout
print "Writing %s" % daxfile
f = open(daxfile, "w")
diamond.writeXML(f)
f.close()

Table S1. Feature comparison between COSMOS and other workflow tools discussed in main text with respect to use in next-generation sequencing analysis
(citations refer to references found in the main text)

 COSMOS Bpipe

(Sadedin et al. 2012)
Ruffus

(Goodstadt, 2010)
Galaxy

(Goecks et al., 2010)
Taverna

(Wolstencroft et al. 2013)
Pegasus

(Deelman et al., 2005)
Workflow language Python Groovy Python GUI GUI Java, Python, Perl

Workflow abstraction syntax Yes Yes Yes No No No[1]

DAG constructed at run-time Yes Yes Yes No No No

Support for complex parallelization Yes Yes Yes No No Yes

Realtime monitoring dashboard Yes No No Yes Yes Yes

SQL-like persistent database Yes No No Yes No No

Uses process exit codes[2] Yes No No Yes Yes Yes

Combine subworkflows Yes Yes No No ? Yes

Support for >10k jobs[3] Yes No No No No Yes

Built-in DRM support Yes Yes No Yes No Yes

DRMAA[4] support Yes No No Yes via plugin No

Task DAG visualizer Yes No No Yes Yes Yes

Stage DAG visualizer Yes Yes Yes No No Yes

Topological execution[5] Yes No No Yes Yes Yes

Auto-delete intermediate files Yes No No No No No

[1] Pegasus provides an API for constructing DAGs, but the workflow is not abstracted from the DAG itself; in effect, the Pegasus programmer must construct the DAG
directly.
[2] COSMOS’ persistent database provides the ability to store task’s exit codes, this solves some issues with Ruffus and Bpipe’s reliance on output file timestamps is that failed
jobs can be misinterpreted as successful when resuming a failed workflow.
[3] Because Ruffus and Bpipe both create a thread per job, they may require more RAM than is available on modern machines for massive workflows. COSMOS was able to
perform the GATK joint calling workflow with a dataset of 99 whole genomes.
[4] Although Bpipe supports many popular DRMs, DRMAA has support for almost every widely used DRM including GridEngine, Condor, PBS/Torque, GridWay, PBS, and
LSF.
[5] COSMOS (and Galaxy and Taverna) execute a task as soon as its dependencies have successfully completed. Ruffus and Bpipe wait for an entire stage to complete before
advancing.

